Chem. Ber. 113, 2868 – 2875 (1980)

Dicarbonyl(cyclopentadienyl)mangan-Cluster mit SbClund SbCl₂-Brückenliganden

Joachim von Seyerl, Lidwina Wohlfahrt und Gottfried Huttner*

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz

Eingegangen am 27. Dezember 1979

SbCl₃ läßt sich mit C₅H₅(CO)₂MnTHF in THF partiell enthalogenieren. Je nach den Reaktionsbedingungen entsteht [(C₅H₅(CO)₂Mn)₂SbCl]Mn(CO)₂C₅H₅ (**2**), die erste Verbindung mit einem cyclischen Dimetallastiban-Liganden, oder der offenkettige Komplex C₅H₅(CO)₂-Mn – SbCl₂ – C₅H₅(CO)₂Mn – SbCl₂ – Mn(CO)₂C₅H₅ (**3**). In **3** sind beide Antimonatome des im freien Zustand unbekannten *trans*-Dicarbonyl(cyclopentadienyl)bis(dichlorstibino)mangan-Liganden, C₅H₅(CO)₂(SbCl₂)₂Mn, an je eine C₅H₅(CO)₂Mn-Einheit gebunden. Synthese, Eigenschaften und Röntgenstrukturanalyse von **2** und **3** werden beschrieben.

Dicarbonyl(cyclopentadienyl)manganese Clusters Containing SbCland SbCl₂-Bridging Ligands

SbCl₃ undergoes partial dehalogenation when treated with $C_5H_5(CO)_2MnTHF$ in THF. Depending upon the reaction conditions $[(C_5H_5(CO)_2Mn)_2SbCl]Mn(CO)_2C_5H_5$ (2), the first compound to contain a cyclic dimetallastibane ligand, or the open-chain complex $C_5H_5(CO)_2$ -Mn - SbCl₂ - $C_5H_5(CO)_2Mn - SbCl_2 - Mn(CO)_2C_5H_5$ (3) are formed. 3 contains a *trans*-dicarbo-nyl(cyclopentadienyl)bis(dichlorostibino)manganese ligand $C_5H_5(CO)_2(SbCl_2)_2Mn$, not known in the free state. Each of the two Sb atoms of this ligand is bonded to a $C_5H_5(CO)_2Mn$ moiety within the complex 3. Syntheses, properties as well as X-ray structure analyses of 2 and 3 are described.

Vor kurzem berichteten wir über die reduktive Enthalogenierung von AsCl₃ und Stabilisierung der Reaktionsprodukte in Form der Chlorarsinidenkomplexe 1 mit trigonalplanar-koordiniertem Arsen¹).

Daß das System L_nMTHF/THF ebenso zur Enthalogenierung von SbCl₃ dienen kann, konnten wir am Beispiel C₅H₅(CO)₂MnTHF/THF zeigen. Durch Variation der Reaktionsbedingungen lassen sich in jeweils guter Ausbeute die Antimon-Mangan-Cluster 2 und 3 isolieren.

Vereinigt man eine Lösung von $C_3H_5(CO)_2MnTHF$ mit SbCl₃ im Unterschuß (Molverhältnis 3:1), so beobachtet man bei sofortigem Abziehen des Lösungsmittels eine intensive Grünfärbung. Aus dem Reaktionsgemisch kann nach chromatographischer Trennung neben 3 als Hauptprodukt der Komplex 2 erhalten werden, in dem ein man-

gansubstituiertes Stiban als Brückenligand vorliegt. Läßt man dagegen SbCl3 im Molverhältnis 1.5:1 mit C₅H₅(CO)₂MnTHF eine Stunde bei Raumtemperatur reagieren, so kann durch Säulenchromatographie der Komplex 3 als Hauptprodukt neben wenig 2 erhalten werden. Beide Verbindungen sind kristallin und lösen sich in Toluol oder Methylenchlorid mäßig bis gut mit intensiv grüner (2) bzw. violetter (3) Farbe.

Lage	parameter				Abs	tände (pm)	Winkel (grd.)
Atom	X/A	Y/B	Z/C		в	Sb - Cl	246.3(4)
C b	0 27534	(6) 0 45319	5(7) 0 298	21/7)		Sb - Mn1	254.0(2)
50	0.1150	(1) 0.3038	(1) 0.205	6 /11		Sb - Mn3	257.7(2)
Mn I	0.1159	(1) 0.3930	(1) 0.303	5 (7)		Sb - Mn2	246.3(3)
Mnz	0.3322	(1) 0.5493	(2) 0.156	5 (2)		Mn1 - Mn3	304.3(3)
Mns	0.2565	(1) 0.5347	(2) 0.405			$Mn1 - C_T$	214.2(15)
CI	0.3/63	(3) 0.2934	(3) 0.359	1 (3)	2 8 (2)	Mn2 - C	212 7(15)
01	0.1218	(7) 0.3123	(8) 0.537		2.5(2)	11	412.7(1J)
02	0.1/2/		(0) 0.291	9 (0)	2.4(2)	$Mn3 - C_{TT}$	T 213.4(15)
03	0.1005	(7) 0.6693	(7) 0.090	2 (0)	2.3(2)		-
04	0,4398	(7) 0.7032	(7) 0.333	5 (8)	2.2(2)		
05	0.0764	(7) 0.5980	(8) 0.509	9 (8)	2.9(2)	Cl - Sb	- Mn1 104.6(1)
06	0.2390	(7) 0.7300	(1) 0.360	o (/)	2.2(2)	C1 - Sb	- Mn2 106 2(1
01	0.1213	(9) 0.353	(1) 0.447		1.5(3)	C1 - Sh	- Mn3 106 8(1)
02	0.157	(1) 0.261	(1) 0.297		1.5(3)	Mn1 + Sb	- Mn3 73 0(1)
C3	0.233	(1) 0.634	(1) 0.120		2.0(3)	Mn1 - 55	- Mn2 135.5(1)
C4 05	0.398	(1) 0.641	(1) 0.264		1.3(3)	Mn2 - Sb	- Mn3 125.7(1
C5	0.145	(1) 0.566	(1) 0.496		1 2 (2)		
211	0.247		(1) 0.400		2 2 (2)		
010	-0.012	(1) 0.405	(1) 0.203		2.3(3)		
012	-0.033	(1) 0.376	(1) 0.232	(1)	2.0(3)		
	0.007	(1) 0.360	(1) 0.144	243	2.3(3)		
C14	0.055	(1) 0.452 (1) 0.529	(1) 0.730		2.3(3)		
C13	0.042	(1) 0.523	(1) 0.203	211	2 8 (3)		
C21	0.300	(1) 0.577	(1) -0.021		2.0(3)		
C22	0.307	(1) 0.313	(1) -0.021	11	2.2(3)		
C23	0.324		(1) 0.044	243	2.5(3)		
C25	0.416	(1) 0.422	(1) 0.121	211	$2 \cdot 3(3)$		
C21	0.130	(1) 0.522	(1) 0.660	215	2 0 (3)		
C37	0.325	(1) 0.586	(1) 0.000	210	2.5(3)		
C32	0.390	(1) 0.300	(1) 0.563	11	1 6(3)		
C34	0.341	(1) 0.405	(1) 0.509	11	2 0 (3)		
C 35	0 296	(1) 0.473	(1) 0.658	11	1.9(3)		
	0.1/0	(1) 0.110	(1) 01030	(,			
Aniso	trope Te	mperaturfakt	oren				
		.					
Atom	B11	B22	B33	B12	B13	B23	
a b	1 49(4)	1 03(4)	1 23 (4)	(1) 70 6	0 41 (3)	0 17(1	
50	0.07(9)	1 10(9)	0.61(9) -	22(8)	0.04(8)	-0.20(7)	
2011	1 7 (1)	0 95 (9)	0.74(8)	26(9)	0.50(8)	0.06(8)	
nu Z Ma R	1 3 /1	0.95(9)	0 97 (9) -	14(8)	0 26 (8)	+0 19(8)	
сц С1	2 3 (2)	1, 1, 1, (2)	2.7 (2)	5.8(1)	1.2 (1)	0.7 (1	
~~	2.3 (2)	, (2)					-
a) Dei T-	anisotr	ope Temperatu 4(h ² a* ² B ₁₁ +	urfaktor T i + 2 hka	st gege *b*B ₁₀	ben durch +));B	in 10 ⁴ pm	2

Tab. 1. Geometrische Parameter von 2^{a,b)}

b) Die Atome C11 - C15 entsprechen dem Cyclopentadienylring I, die Atome C21 - C25 dem Cyclopentadienylring II, die Atome C31 - C35 dem Cyclopentadienylring III.

Strukturanalyse

Durch Abkühlen von Lösungen in n-Pentan/Methylenchlorid konnten von den Verbindungen 2 und 3 Kristalle erhalten werden, die sich zur Röntgenstrukturanalyse eigneten (Tab. 1, 2, Abb. 1, 2).

Lagep	arameter							Abst	änd	e	(pm)	W1	nkel	(gr	d.)	-
Atom	X/A		¥/В		2/C		В		Sb1	-	4n2 سم		243.	3(4)		
Sh1	0.0528	5 (0)	0 140	2(0)	0 1711	5 (0)			Sb2	-	Mn3		259.	9(4)		
Sb2	-0.0524	(3)	-0.139	7(2)	-0.1727	(1)			Sb2	-	Mn 1		241.	2(5)		
Mn1	-0.2295	(7)	-0.132	(5)	-0.3339	(3)			C h 1		~ 1 3		220	4 171		
Mn2	0.2866	(6)	0.194	2 (5)	0.3289	(3)			501	-	C13		230.	4(/)		
Mn 3	0.0979	(5)	0.121	5 (5)	-0.0135	(3)			501	-	C14		230.	5(8)		
Cl1	0.2094	(9)	-0.2593	(9)	-0.1905	(5)			Sh2	_	c12		238	0(7)		
C12	-0.247	(1)	-0.4072	2 (9)	-0.1101	(5)			552		· · · ·					
C13	-0.241	(1)	-0.1439	(9)	0.1550	(5)			Mn1	-	C1		177	(3)		
C14	-0.118	(1)	0.362	(1)	0.1765	(5)			Mn1	-	C2		174	(3)		
CI	-0.342	(4)	0.026	(4)	-0.287	(2)	2.3	(5)	Mn2	-	C3		176	(3)		
01	-0.413	(3)	0.139	(3)	-0.266	$\frac{1}{2}$	3.50	(4)	Mn2	-	04		170	(3)		
02	-0.027	(4)	0.055	(4)	~0.356	(2)	2.5	(5)	Mn 3	-	25		175	(3)		
02	0.115	(4)	0.104	(4)	-0.370	(2)	2.01	(6)	titt 2	-	0		170	(4)		
õ	0.574	(3)	0.557	(3)	0.300	$\frac{1}{2}$	4 6/	(6)	Mn î	-	ст		212.	3(35)	
Č4	0.151	(4)	0.314	(4)	0.389	(2)	2.3	5)	Mn 2	-	c		211.	7 (40)	
04	0.058	(3)	0.389	(3)	0.427	(2)	3.60	4)			-11				,	
C5	0.179	(4)	-0.062	(3)	0.028	(2)	0.9	5)	MDJ	-	CII.	I	214.	0(30)	
Ó5	0.240	(3)	-0.173	(3)	0.057	(1)	3.00	4)								
C6	-0.169	(5)	0.057	(5)	-0.033	(2)	3.0((7)	Mn 2	-	Sb1	~ 1	Mn 3	13:	3.6(1)
06	-0.344	(3)	0.042	(3)	-0.045	(1)	3.0(4)	Mnî	-	Sb2	- 1	Mn 3	130	5.3(1)
C11	-0.354	(6) •	-0.247	(5)	-0.486	(3)	5.2(8)	SP1	-	Mn 3	- 3	562	13	5.2(1)
C12	-0.225	(5) -	-0.337	(4)	-0.450	(2)	3.2(6)	C13	-	SDI	- 9	214	9	1.5(3)
C13	-0.307	(5)	-0.433	(4)	-0.375	(2)	3.5(6)	CLI	-	SDZ	~ (¢12	9.	5.9(2)
C14	-0.468	(5)	-0.404	(5)	-0.366	(2)	3.6(7)	C1	-	Mn 1	- (22	92	2.3(14
C15	-0.513	(0) -	0.296	(6)	-0.436	(3)	0.2(9)	С3	-	Mn 2	- (24	92	2.6(13
C22	0.195	(5)	0.033	(4)	0.401	(2)	4 71	7)	C5	-	Mn3	- (26	112	2.1(14
C23	0.253	(5) -	-0.094	(5)	0.309	(3)	4.60	71	C5	-	Mn 3		Sb1	76	5.2(8)
C24	0.446	(7)	0.009	(6)	0.316	(3)	6.20	- 	C5	-	Mn 3	- 5	5b2	80	(8)
C25	0.538	(5)	0.140	(5)	0.410	(2)	3.8(7)	C6	-			501	80	0.0(11
C31	0.300	(4)	0.415	(4)	0.048	(2)	2.5(5)	0	-	. כווויי	- :	DZ	/4		11
C32	0.406	(4)	0.314	(4)	0.007	(2)	2.1(5)								
C33	0.310	(5)	0.257	(4)	-0.094	(2)	3.1(6)								
C34	0.158	(4)	0.317	(4)	-0.113	(2)	2.6(5)								
C35	0.143	(5)	0.419	(4)	-0.023	(2)	3.2(6)								
Anisot	trope Tem	perati	irfakto	ren												
Atom	B11	B23	2	B33	B12		B13	B	23							
SP1	1.9(1)	1.4((1) 1	.4(1)	0.5(1)	0	4(1)	-0.0	5(1)							
Sb2	1.6(1)	0.9	(1) 0	.9(1)	0.3(1)	0	.1(1)	0.	1(1)							
Mn1	2.2(2)	0.90	(2) 1	.2(2)	0.2(1)	-0	(1)	-0	2(1)							
Mn2	2.0(2)	1.20	(2) 0	.9(2)	0.4(1)	0	1(1)	-0.	· ()							
211	2 0 (2)	2 3/	3 1	9(3)	1 3 (2)	š	7(2)	0.0	5/25							
C12	2.6(3)	1.30	31 1	.9(3)	-0.2(2)	ň	5(2)	0.1	5(2)							
cii	3.3(3)	2.40	3) 2	.6(3)	-0.4(3)	ŏ	8(3)	-0.1	(2)							
č14	4.1(4)	3.8(4) 1	.9(3)	2.8(3)	-0.	2(3)	-0.5	5 (3)							
a) Der T =	anisotro exp(-1/4	pe Ter (h ² a*	mperatu ² B ₁₁ +	ırfakt	or T ist 2 hka*b*	gege ^{•B} 12	ben dı +)	irch	in	10	4. pm	2.				-
b) Die	Atome C1	1 - C	15 ents	prech	en dem Cy	clop	entadi	lenyl	ring	, I	,					

Tab. 2. Geometrische Parameter von 3^{a,b)}

ь) die Atome C21 - C25 dem Cyclopentadienylring II, die Atome C31 - C35 dem Cyclopentadienylring III.

Kristalldaten

2, C₂₁H₁₅ClMn₃O₆Sb, Molmasse 685.3 $a = 1505.2, b = 1243.3, c = 1210.5 \text{ pm}, \beta = 109.1^{\circ}$ Raumgruppe $P 2_1/c$, Z = 4, 1544 unabhängige Reflexe, $R_1 = 0.051$ Kristallgröße: $0.2 \times 0.2 \times 0.3$ mm

3, $C_{21}H_{15}Cl_4Mn_3O_6Sb_2$, Molmasse 913.4 a = 710.6, b = 756.98, c = 1395.9 pm, $\alpha = 96.7$, $\beta = 99.3$, $\gamma = 110^{\circ}$ Raumgruppe *P* 1, Z = 1, 1229 unabhängige Reflexe, $R_1 = 0.05$ Kristallgröße: 0.15 × 0.2 × 0.2 mm

Die Messung erfolgte auf einem P3-Diffraktometer der Firma Syntex, λ (Mo- K_{α}) = 71.069 pm, Graphitmonochromator, ω -scan, $\Delta \omega = 1^{\circ}$, $1 \le \dot{\omega} \le 29.3^{\circ}$ min⁻¹, T = 190 K, Lösung: Syntex EXTL, konventionell, Verfeinerung mit voller Matrix, teilweise anisotrop.

Eine Ansicht der Komplexe geben die Abbildungen 1 und 2. Einen Überblick über die wichtigsten Abstände und Winkel enthalten die Tabellen 1 und 2.

Diskussion

In beiden Verbindungen liegen die Antimonatome in verzerrt tetraedrischer Umgebung vor. Eine bzw. zwei Halogenfunktionen des Ausgangsliganden SbCl₃ sind durch Ausbildung von Mangan-Antimon- σ -Bindungen ersetzt. Der dabei entstehende Elektronenmangel am Manganatom wird in Verbindung 2 über eine Mangan-Mangan-Bindung ausgeglichen. Der daraus resultierende Heterocyclus enthält den ersten röntgenographisch gesicherten Mn – Sb – Mn-Dreiring. Ähnliche Heterocyclen mit SbFe₂-, AsFe₂- und PFe₂-Ringen sind dagegen bereits bekannt²).

Abb. 1. Struktur von 2

Die Mn – Mn-Bindung ist mit 304.3 pm relativ lang. Mn – Mn-Abstände von 292.3 pm in Mn₂(CO)₁₀³⁾ und 273 pm im carbenverbrückten Dimangankomplex (C₅H₅(CO)₂Mn)₂- μ^2 -C = C(H)Ph⁴⁾ sowie 291 pm in (CH₃)₂AsC₅H₅(CO)₂Mn(CO)₄Mn⁵⁾ zeigen deutlich kürzere Bindungslängen. Die Sb – Mn-Bindungen innerhalb des Metallheterocyclus von 254.0 und 257.7 pm sind kürzer als aus der Summe der Kovalenzradien zu erwarten wäre (ca. 280 pm: $r_{Sb} = 138$ pm, $r_{Mn} = 146$ pm^{6,7)}). Wesentlich kürzer als die beiden Mn – Sb-Abstände im Ring ist die dritte Sb – Mn-Bindung, mit der das cyclische Dimetalla-Stiban (C₅H₅(CO)₂Mn)₂SbCl an eine C₅H₅(CO)₂Mn-Einheit koordinativ ge-

bunden ist. Mit 246.3 pm deutet sie auf einen sehr gut rückbindenden Liganden hin und ist fast ebenso kurz wie die in PhSb[C₃H₅(CO)₂Mn]₂ gefundene von 245 pm⁸), in der jedoch für das trigonal planare Antimon eine Bindungsverkürzung durch Mnd π – Sbp π -Anteile diskutiert werden muß.

Während die vergleichsweise langen Metall-Phosphor- und Metall-Metall-Bindungen in $(CO)_5Cr(PPh)Fe_2(CO)_8^{(2)}$ auf die starke sterische Belastung des Moleküls zurückgeführt wurden, trifft dies im vorliegenden Fall offenbar nur für die Mn – Mn-Bindung zu. Der Grund für diese Beobachtung sollte im elektronenziehenden Cl-Substituenten zu suchen sein. Der Sb – Cl-Abstand in **2** ist mit 246 pm um 8 pm länger als die in SbCl₃ gefundene Sb – Cl-Bindungslänge von 238 pm⁷).

In Verbindung **3** bildet das zentrale $C_5H_5(CO)_2Mn$ -Fragment zwei σ -Bindungen zu SbCl₂-Einheiten aus und besitzt so die seltene Koordinationszahl 5 (C_5H_5 als ein Ligand betrachtet, der formal eine Koordinationsstelle besetzt). Der resultierende *trans*-Bis-(μ -dichlorstibino)dicarbonyl(cyclopentadienyl)mangan-Teil enthält ein $C_5H_5(CO)_2Mn$ -Fragment, in dem die beiden CO-Gruppen mit dem Mittelpunkt des Cyclopentadienylrings und dem Manganatom in einer Ebene liegen. Diese "planare" Geometrie der $C_5H_5(CO)_2Mn$ -Einheit wird für den Übergangszustand bei Substitutionen an $C_5H_5(CO)_2Mn$ -Komplexen diskutiert⁹.

Abb. 2. Struktur von 3

In **3** sind an dieses ebene Fragment auf beiden Seiten SbCl₂-Gruppen gebunden. Andererseits kann die Koordination des zentralen Mn-Atoms auch mit den Strukturmerkmalen von Komplexen wie *trans*- $C_5H_5(CO)_2Mo(I)PPh_3^{10}$ in Beziehung gesetzt werden, in denen das Metallatom wie in 3 quadratisch pyramidal umgeben ist. Die einander paarweise gegenüberliegenden Mangan-Ligand-Bindungen bilden miteinander Winkel von 112° ($C_{CO} - Mn - C_{CO}$) bzw. 135° (Sb - Mn - Sb), die $C_{CO} - Mn -$ Sb-Winkel liegen bei 74 – 78°. Die sterisch anspruchsvolle Fünffachkoordination des zentralen Manganatoms in 3 führt zu einer verminderten Beweglichkeit des an dieses Manganatom gebundenen Cyclopentadienylrings III. Seine C-Atome zeigen deutlich kleinere Temperaturparameter als die Atome der Ringe I und II an den terminalen Manganzentren. Die Sb-Mn-Bindungslängen von 264.1 bzw. 259.9 pm für die zentrale $C_{s}H_{s}(CO)_{2}Mn$ -Einheit sind um 18 bzw. 21 pm länger als die für die endständigen Komplexfragmente gefundenen von 241.2 und 243.3 pm. Diese wiederum stellen die kürzesten bislang beobachteten Sb – Mn-Abstände dar (Mn – Sb in PhSb[C₅H₅(CO)₂Mn]₂ 244 – 245 pm⁸⁾).

Spektroskopische Daten

IR- und ¹H-NMR-spektroskopische Untersuchungen ergeben jeweils Hinweise auf Komplexe mit $C_5H_5(CO)_2Mn$ -Einheiten in verschiedener chemischer Umgebung.

2	1985 (m)	1960 (s)	1935 (s)	$\frac{\sin^2 - \beta \sin^2 \alpha}{1930 (sh)}$	1870 (m)		
3	1998 (m)	1983 (m)	1970 (m)	1960 (s)	1945 (s)	1915 (m)	1905 (w)
¹ H-N	IMR-Daten, δ	Werte rel. ext	. TMS, Lös	ungsmittel C	D ₂ Cl ₂ , rel. Ir	itensitäten in	Klammern
¹ H-N	MR-Daten, δ	Werte rel. ext	. TMS, Lös	ungsmittel C	D_2Cl_2 , rel. Ir	itensitäten in	Klammern

Tab. 3. voo-Frequenzen in cm⁻¹. Lösungsmittel CH₂Cl₂. CaF₂-Optik

Das Auftreten von mehr als zwei v_{CO}-Banden in C₅H₅(CO)₂Mn-Komplexen weist allerdings nicht notwendig auf das Vorliegen verschieden koordinierter Manganatome hin, sondern kann auch eine Folge des Gleichgewichtes zwischen mehreren rotameren Formen einer Verbindung sein^{1,8)}.

Die Beobachtung mehrerer ¹H-NMR-Signale für die Cyclopentadienylprotonen der $C_{S}H_{S}(CO)_{2}Mn$ -Reste in einer Verbindung läßt sich jedoch in der Regel nicht auf Rotameriephänomene zurückführen, da die vergleichsweise langsame NMR-Messung über die verschiedenen rotameren Formen mittelt.

Die Anzahl der ¹H-NMR-Signale legt daher nahe, daß in 2 mindestens zwei und in 3 wenigstens drei verschiedene C₅H₅(CO)₂Mn-Gruppen vorliegen bzw. über längere Zeit im Gleichgewicht vorhanden sein sollten. Das Auftreten von zwei $C_{5}H_{5}$ -1H-NMR-Signalen bei 2 steht mit dem Vorliegen von zwei chemisch verschiedenen C_5H_5 -Ringen entsprechend dem Ergebnis der Röntgenstrukturanalyse im Einklang.

Daß dagegen für den Komplex 3 drei verschiedene C₅H₅-¹H-NMR-Signale beobachtet werden, ist nicht ohne weiteres einsichtig. Aufgrund der gefundenen Konstitution im Kristall sollte man für den mittleren C₅H₅-Rest ein Signal und für beide endständige $C_{s}H_{s}$ -Gruppen zusammen ebenfalls nur ein Signal beobachten. Eine Erklärung für die beobachteten drei Singuletts gibt eine Betrachtung der Rotationsmöglichkeiten am Modell.

Durch die sterisch anspruchsvolle Fünffach-Koordination des zentralen Mangan-Atoms sollte der Drehung um die Sb-Mn-Bindung eine erhöhte Rotationsbarriere zukommen. Dies führt offenbar zur Ausbildung zweier über längere Zeit stabiler rotamerer Formen der Verbindung 3 in Lösung, die im Gleichgewicht zur Beobachtung von zwei Signalen bei 4.8 und 4.9 ppm im ¹H-NMR-Spektrum Anlaß geben.

Das für 3 beobachtete ¹H-NMR-Signal bei 5.45 ppm zeigt unseres Wissens die stärkste für C_5H_5 in $C_5H_5(CO)_2Mn$ -Komplexen jemals beobachtete Tieffeldverschiebung. Es ist sicher den Cyclopentadienylprotonen der zentralen $C_5H_5(CO)_2Mn$ -Einheit zuzuordnen und spiegelt die ungewöhnlichen Bindungsverhältnisse wider.

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und dem Fonds der Chemischen Industrie, Frankfurt/M., für die Unterstützung dieser Arbeit. Für die Durchführung von Elementaranalysen sind wir Frau R. Naserke dankbar.

Experimenteller Teil

Sämtliche Arbeiten wurden unter N₂ als Schutzgas mit frisch destillierten und absolutierten Reagentien durchgeführt. Zur Chromatographie diente eine kühlbare Säule (Länge 20 cm, Durchmesser 2.5 cm; Kieselgel, Merck, 0.063 - 0.2 mm). $- {}^{1}$ H-NMR-Spektren: Bruker-WP-80-CW-Gerät, 30 °C. – IR-Spektren: Zeiss IMR 40, CaF₂-Küvetten.

 μ_3 -(Chlorstibino)-[dicarbonyl(cyclopentadienyl)mangan]bis[dicarbonyl(cyclopentadienyl)mangan(Mn – Mn)] (2): 5.0 g (24 mmol) C₅H₅(CO)₃Mn werden in 400 ml THF 2.5 h bestrahlt. Die entstandene Lösung von C₅H₅(CO)₂MnTHF (Umsatz 70%) wird mit 2.0 g (9.0 mmol) SbCl₃ in 20 ml THF vereinigt und sofort bei 20°C im Ölpumpenvakuum abgezogen. Die Lösung des Rückstands in CH₂Cl₂ wird über 5 cm Silicagel filtriert. Nach Einengen der Lösung läßt man das Rohprodukt in der Kälte auskristallisieren. Analysenreines 2 erhält man durch Chromatographie bei – 30°C an Silicagel. C₅H₅(CO)₃Mn wird mit Toluol ausgewaschen, mit Toluol/CH₂Cl₂ (1:1) kann eine violette Zone eluiert werden, die wenig 3 enthält. 2 erhält man mit CH₂Cl₂ als breite grüne Zone, aus der es nach Abziehen des Lösungsmittels und Umkristallisieren aus Methylen-chlorid in Form schwarzer Kristalle erhalten wird. Ausb. 1.3 g (1.9 mmol, 34%, bez. auf C₅H₅(CO)₂MnTHF). Schmp. > 148°C (Zers.).

MS [m/e (rel. Int.)]: ClSb[C₅H₅(CO)₂Mn]₂⁺ 508 (2), Sb[C₅H₅(CO)₂Mn]₂⁺ 473 (3), Sb[C₅H₅(CO)Mn]₂⁺ 417 (1), Sb(C₅H₅Mn)₂ 361 (5), SbC₅H₅Mn⁺ 241 (10), C₅H₅Mn⁺ 120 (100). C₂₁H₁₅ClMn₃O₆Sb (685.3) Ber. C 36.80 H 2.20 Gef. C 36.60 H 2.08

Dicarbonyl(cyclopentadienyl)bis[dicarbonyl(cyclopentadienyl)mangan]-bis- μ -(dichlorstibino)mangan (3): 5.0 g (24 mmol) C₅H₅(CO)₃Mn werden in 400 ml THF 2.5 h bestrahlt. Die entstandene rote Lösung des THF-Komplexes (Umsatz 70%) wird mit 6.0 g (26.5 mmol) SbCl₃ in 20 ml THF vereinigt und 1 h bei 20 °C gerührt. Nach Abziehen des Solvens wird der Rückstand in 20 ml CH_2Cl_2 aufgenommen und die Lösung über Silicagel filtriert. Das aus dieser Lösung auf Kieselgel aufgezogene violette Reaktionsprodukt wird bei -30 °C chromatographiert. $C_5H_5(CO)_3Mn$ wird mit Pentan/Toluol (1:1) ausgewaschen. Danach folgt mit Toluol/ CH_2Cl_2 (1:1) eine breite violette Zone, aus der 3 nach Umkristallisieren aus CH_2Cl_2 in schwarzen Kristallen isoliert werden kann. Ausb. 1.0 g (1.1 mmol, 20%, bez. auf $C_5H_5(CO)_2MnTHF$). Schmp. > 160 °C (Zers.).

MS [m/e (rel. Int.)]: ClSb[C₅H₅(CO)₂Mn]₂⁺ 508 (2), Sb[C₅H₅(CO)₂Mn]₂⁺ 473 (3), Sb[C₅H₅(CO)Mn]₂⁺ 417 (1), Sb(C₅H₅Mn)₂ 361 (3), SbC₅H₅Mn⁺ 241 (8), C₅H₅Mn⁺ 120 (100).

 $C_{21}H_{15}Cl_4Mn_3O_6Sb_2$ (913.4) Ber. C 27.62 H 1.66 Mn 18.04 Gef. C 26.98 H 1.56 Mn 18.24

Literatur

- J. v. Seyerl, U. Moering, A. Wagner, A. Frank und G. Huttner, Angew. Chem. 90, 912 (1978); Angew. Chem., Int. Ed. Engl. 17, 844 (1978).
- G. Huttner, G. Mohr, P. Friedrich und H.-G. Schmid, J. Organomet. Chem. 160, 59 (1978).
 L. F. Dahl und R. E. Rundle, Acta Crystallogr. 16, 419 (1963).
- ⁴⁾ A. N. Nesmeyanow, G. G. Aleksandrov, A. B. Antonova, K. N. Anisimov, N. E. Kolobova und Y. T. Struchkov, J. Organomet. Chem. 110, C 36 (1976).
- ⁵⁾ H. Vahrenkamp, Chem. Ber. 107, 3867 (1974).
- ⁶⁾ L. Pauling, Die Natur der chem. Bindung, Verlag Chemie, Weinheim 1964.
- ⁷⁾ F. A. Cotton und G. Wilkinson, Anorganische Chemie, Verlag Chemie, Weinheim 1974.
- ⁸⁾ J. v. Seyerl und G. Huttner, Angew. Chem. **90**, 911 (1978); Angew. Chem., Int. Ed. Engl. **17**, 843 (1978).
- ⁹⁾ Übersicht: *H. Brunner*, Fortschr. Chem. Forsch. **56**, 67 (1975); *P. Hoffmann*, Angew. Chem. **89**, 551 (1977); Angew. Chem., Int. Ed. Engl. **16**, 536 (1977).
- ¹⁰⁾ M. A. Busch, A. D. U. Hardy, Lj. Manojlovic-Muir und G. A. Sim, J. Chem. Soc. A 1971, 1003.

[438/79]